CS Undergraduate Committee

CS430 Course Review – Fall 2004

During the Fall 2004 semester a detailed course review was done of CS430. The following materials were collected and reviewed by the CS Undergraduate Studies Committee and discussed with the instructor:

· Course Overview. syllabus, textbook, lab manual, lecture notes

· Sample graded labs, quizzes, exams

Conclusions were:

· Homework assignments should be more real world applications, less “plug and chug”

· More feedback on graded work. Be careful giving out answer keys.

· Stress separation of Algorithm from Implementation (code).

Detailed Notes:

Course Notes and Syllabus Review – Shlomo

Project/Homework Review

Course Stats: There were five homework assignments in CS430, each of which had about three submissions (low, medium, high scoring). (NOTE: 6th homework on graphs was missing.

Coverage: Asymptotic complexity (HW1), Recurrences (HW1), Quicksort and sorting (HW2), Heaps (HW2), Trees (HW2), Lists (HW3), Hashing (HW3), B-trees (HW4),

Matrices (HW5), Greedy algorithms (HW5)

Homework technique: Students are given custom problems and problems from the text.

They are later given the answer keys, which provide some explanation. As a result, the particular comments on the homeworks were skimpy (usually one or two short comments). We discussed this in the UG Committee meeting, and decided that using the key is probably fine, especially if the homeworks are reviewed during class. Note that giving students a key makes reusing questions more difficult.

Comments: Five homeworks seem light for a semester's course. There is not enough drilling. The homeworks problems, in my opinion, should be more high-level, framing problems in real-world scenarios that make students better understand data structures. For example, "Joe wants to design a phone book where users can efficiently find phone numbers given a name, or scroll through the list of names. Which access structure should he use? What is the complexity of a lookup operation, or a scroll operation?" The answer should be a B-tree of some sort, and not hashing. Understandably, such questions are hard to devise and grade, but I believe this is the way that CS practitioners think: top down. Some problems are top down (e.g., questions 6 and 7 in HW 5), but many are too mechanical to give the student a sense of the usefulness of algorithms. Of course, some low level questions must be asked to ensure that students know particularities of some algorithms. Perhaps students should also write some algorithms and analyze them. For example, a student may write and analyze an algorithm for some version of the "Towers of Hanoi" problem. Might be interesting. (NOTE: there is also a programming assignment that usually analyzes various approaches to a problem (sorting, knapsack, hashing, etc)) (Yee, Goharian, Lan)

Quizzes/Exams Review - Overall, the exams for CS 430 are right on target. The material that should be covered in algorithms is covered and all of the fundamental algorithms are there. My only suggestion would be to absolutely insist on students providing an algorithm when asked for an algorithm. In some cases, a test says "give the algorithm or code". I would much prefer that students in an algorithm class really learn the difference and to learn how to completely separate them self from the implementation details.
Finally, I am not convinced that enough feedback is given to students in the class. In the samples I reviewed, incorrect answers resulted in very few corrections. I think students would learn more if a more detailed correction was given (Grossman).
